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Abstract
Loosely-coupled distributed systems have significant scale
and cost advantages over more traditional architectures, but
the availability of the nodes in these systems varies widely.
Availability modeling is crucial for predicting per-machine
resource burdens and understanding emergent, system-wide
phenomena. We present new techniques for predicting avail-
ability and test them using traces taken from three distributed
systems. We then describe three applications of availability
prediction. The first, availability-guided replica placement,
reduces object copying in a distributed data store while in-
creasing data availability. The second shows how availabil-
ity prediction can improve routing in delay-tolerant networks.
The third combines availability prediction with virus model-
ing to improve forecasts of global infection dynamics.

1 Introduction
Cooperative, opt-in distributed systems provide attractive
benefits, but face at least one significant challenge: nodes
can enter and leave the collective on a whim, because each
machine may be separately owned and managed [3, 6, 29].
Such churn can lead to significant overheads [5]. However,
if one could predict the availability of even a portion of the
nodes with reasonable accuracy, one could reduce these costs
by planning for changing availability instead of reacting to it.

This paper introduces new techniques for predicting node
availability. Our predictors are less conservative than pre-
vious analytical models [2, 5] and more accurately cap-
ture phase relationships between the availability of different
nodes [30]. We test our predictors using availability traces
from the PlanetLab distributed test bed [33], the Microsoft
Corporation [6], and the Overnet distributed hash table [3].
Each set of machines has a distinct predictability profile, and
we explain the differences in predictability by uncovering the
generic classes of uptime patterns found in each data set.

We then provide three applications of our prediction tech-
niques. First, we show how to reduce object copying in a dis-
tributed hash table by biasing replicas towards highly avail-
able nodes. We can eliminate the majority of non-optimal

copies incurred by the standard replication scheme while in-
creasing data availability by at least a factor of two.

We then apply our predictors to two delay-tolerant net-
working scenarios [13], using them to approximate the role
of contact oracles [16]. Under reasonable load factors, our
predictive schemes reduce delivery latency to within 15% of
the latency provided by an oracle.

Finally, we show how explicit representations of machine
availability can improve the fidelity of epidemic spreading
models [17, 25, 34]. These models typically assume that
nodes are always online, so they over-estimate infection lev-
els. By incorporating the availability fluctuations found in
real systems, these models can capture diurnal variations in
the spreading rate and forecast steady state infection levels
that are much closer to those actually exhibited.

2 Related Work
There are many empirical studies of availability in distributed
systems. Most used active network probing to detect uptime
changes. Bolosky et al described the uptimes of over 50,000
PCs belonging to the Microsoft Corporation [6]. Saroiu et al
studied Napster and Gnutella, popular peer-to-peer file trad-
ing services [29]. Douceur performed a meta-analysis of
availability data [8], examining the Microsoft, Gnutella, and
Napster traces, as well as a trace from a sampling of global
Internet hosts [20]. Douceur posited two broad classes of
machine availability; those in the first are almost always on-
line, whereas those in the second have diurnal uptime periods.
Bhagwan et al studied nodes in the Overnet DHT and also
found diurnal uptime patterns [3]. We extend these binary
categorizations by providing a richer taxonomy of uptime
classes and automatic methods for identifying these classes
in availability traces.

Rather than rely on coarse-grained probing, other stud-
ies have used operating system logs to infer downtime. For
example, Simache’s analysis of a Unix workstation cluster
found a median downtime of 38.5 minutes [31]; roughly 35%
of reboots were caused by 10% of the machines, primarily
between 8AM and 6PM.
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Analytic models of cooperative systems typically include
a parameter for host availability. Douceur and Wattenhofer
expressed a machine’s availability in terms of its fractional
downtime [10]. To account for time-of-day effects on global
aggregate availability, Bhagwan et al assumed a pessimistic
mean availability based only on hosts online at night [2].
Blake and Rodrigues also used conservative, average-based
metrics in their model [5].

Such conservative estimates are useful in provisioning
against worst-case scenarios, but they cannot predict the evo-
lution of the system over time, and they cannot predict indi-
vidual node behavior well if a system contains heterogeneous
availability patterns. To do these things, we need to estimate
individual or aggregate availability at multiple points in the
future; our new schemes do this. However, we do not inves-
tigate the long term admission/drop-out rate, which is also a
major issue in peer-to-peer environments [3].

In the computational grid community, availability predic-
tion is done by fitting empirically observed uptime traces
to well-known statistical distributions such as the Pareto or
Weibull distribution [24]. Using the derived model parame-
ters, one can estimate how long a random machine will be
online before failing. This approach suffers from limitations
similar to those of the conservative estimates.

Several cooperative systems have been designed to deal
with varying host availability. Total Recall is a peer-to-peer
storage system which adjusts replication strategies to meet
specified data availability goals [4]. It adapts to changing file
workloads and node churn, providing two methods for main-
taining data redundancy. In eager repair, the system reacts
to a host going down by replicating its data elsewhere. With
lazy repair, the system estimates worst-case host availabil-
ity using Bhagwan’s conservative estimates [2]; it then over-
replicates data such that redundancy targets are still met in
these worst case scenarios. Lazy repair trades increased disk
requirements for reduced bandwidth. Using our availability
predictors, we can reduce both bandwidth and disk consump-
tion. By identifying nodes that are highly available and bias-
ing data storage towards them, we decrease on-demand object
regeneration while reducing the need for over-replication.

Mahajan et al showed how a node in a peer-to-peer system
can estimate the mean session time by observing the churn
rate in its neighbor set [21]. Machines can then reduce the
rate at which they send keep-alive messages while maintain-
ing the same level of consistency in their routing tables, re-
ducing control traffic. Knowing the mean session time of the
network at a particular moment cannot be used to predict the
availability of individual machines in a fine-grained manner.

Schwarz et al proposed a distributed object store which bi-
ases data storage towards peers with high predicted availabil-
ity [30]. Each node has a counter which is initialized to 0.
During a periodic system-wide scan, a node’s counter is in-
cremented by 1 if it is online, otherwise the counter is decre-
mented by 1. Data storage is biased towards nodes with high

counter values. Such a system will correctly identify consis-
tently online nodes as good storage hosts and consistently of-
fline hosts as poor replica sites. However, the counter mech-
anism cannot consistently capture phase relationships within
and between nodes, e.g., the fact that if a host has diurnal
availability, then it will be online for the longest consecutive
stretch starting in the morning, when its counter is lowest. In
Section 5.1, we describe a data store which handles this cor-
rectly.

3 Availability Predictors
In this section, we present our models for availability predic-
tion. Each individual predictor is presented, followed by a
mechanism to combine them to the best possible advantage.

3.1 Saturating Counter Predictors
Our first predictor is the RightNow predictor. A node’s cur-
rent online status is used as the value of all predictions for
all lookahead periods. RightNow predictors are attractive be-
cause they require only one bit of state, and they should work
well for nodes which are predominantly online or predomi-
nantly offline. Unfortunately, they cannot accurately capture
periodic availability patterns over medium or long term time
scales.

We can generalize the RightNow predictor to utilize n bits
of state. For example, whereas the RightNow predictor rep-
resents uptime state using a single bit, the SatCount-2 pre-
dictor uses a 2-bit saturating counter. Such a counter can
assume four values (-2,-1,+1,and +2) which correspond to
four uptime states (strongly offline, weakly offline, weakly
online, and strongly online). During each sampling period,
the counter is incremented if the node is online, otherwise it
is decremented; increments and decrements cannot move the
counter beyond the saturated counts of -2 and +2. Predic-
tions for all lookahead periods use the current value of the
saturating counter, i.e., negative counter values produce “of-
fline” predictions, whereas positive values result in “online”
predictions.

By using a few extra bits of storage, SatCount-x predic-
tors are more tolerant than RightNow predictors to occasional
deviations from long stretches of uniform uptime behavior.
However, like the RightNow predictors, they are inaccurate
for nodes with periodic uptimes.

3.2 State-Based Predictors
To predict the behavior of nodes with periodic availabilities,
we turn to state-based predictors. These predictors explic-
itly represent a node’s recent uptime states using a de Bruijn
graph. A de Bruijn graph over k bits has a vertex for each
binary number in [0, 2k-1]. Each vertex with binary label
b1b2...bk has two outgoing edges, one to the node labeled
b2b3...0 and the other to the node b2b3...1. In other words,
the transition from a starting node to a child node represents
a left shift of the parent’s label and an addition of 0 or 1.
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This is the de Bruijn graph for the uptime
pattern {110}∗ . Each vertex is labeled as
uptime state:sat counter value. A counter
value of x means that the associated vertex has never been
visited. Traversing an edge represents a left shift-and-fill of
the starting node label.

Figure 1: History predictor example

Suppose that we represent a node’s recent availability as a
k-bit binary string, with bi equal to 0 if the node was offline
during the ith most recent sampling period and 1 if it was
online. A k-bit de Bruijn graph will represent each possible
transition between availability states. To assist uptime pre-
dictions, we attach a 2-bit saturating counter to each vertex.
These counters represent the likelihood of traversing a partic-
ular outbound edge; negative counter values bias towards the
0 path, whereas positive values bias towards the 1 path. After
each uptime sampling, the counter for the vertex represent-
ing the previous uptime state is incremented or decremented
according to whether the new uptime sample represented an
“online” edge or an “offline” edge.

To make an uptime prediction for n time steps into the fu-
ture, we trace the most likely path of n edges starting from
the vertex representing the current uptime state. If the last bit
we shift in is a 1, we predict the node will be online in n time
units, otherwise we predict that it will be offline.

Figure 1 depicts the state maintained by such a History
predictor. In this example, the node’s availability has a pe-
riodicity of 3 samples and the repeated uptime string is 110.
The node does not deviate from this pattern, so only the three
shaded vertices represent observable uptime states.

The de Bruijn graphs used by the History predictor resem-
ble the file access trees used by certain cache prefetching
algorithms [14, 19]. However, these algorithms weigh each
edge using raw access counts instead of saturating counters.
CPU branch predictors [22] associate saturating counters with
previously observed branch histories, but they do not use the
superposition idea described below.

3.3 Tolerating Noise in the State Space
Suppose that a node has a fundamentally cyclical uptime pat-
tern, but the pattern is “noisy.” For example, a machine might
be online 80% of the time between midnight and noon and
always offline at other times. If the punctuated downtime be-
tween midnight and noon is randomly scattered, the de Bruijn
graph will accumulate infrequently visited vertices whose la-
bels contain mostly 1’s but differ in a small number of bit
positions. As the length of time that we observe the node
grows, noisy downtime will generate increasingly more ver-
tices whose labels are within a few bit-flips of each other.
Probabilistically speaking, we should always predict that the
node will be online from midnight to noon. However, the
many vertices representing this time interval are infrequently
visited and thus infrequently updated. Their counters may
have weak saturations (-1 or +1) that poorly capture the un-
derlying cyclic availability.

For nodes like this, we can nudge predictions towards the
probabilistically favored ones by considering superpositions
of multiple uptime states. Given a vertex v representing the
current uptime history, we make a prediction by considering
v’s counter and the counters of all observed vertices whose
labels differ from v’s by at most d bits. For example, sup-
pose that k=3 and d=1, and that each of the 2k = 8 possible
vertices corresponds to an actually observed uptime history.
To make a prediction for the next time step when the current
vertex has the label 111, we average the counter values be-
longing to vertices 111, 110, 101, and 011. If the average
is greater than 0, we predict “online,” otherwise we predict
“offline.”

We call such a predictor a TwiddledHistory predictor, since
it considers the current vertex and all “twiddled” vertices
whose labels differ by up to d bits. The hope is that by averag-
ing the counters of similar uptime states, we remove noise and
discover stable underlying availability patterns. The Twid-
dledHistory strategy will perform worse than the regular His-
tory strategy when vertices within d bits of each other cor-
respond to truly distinct uptime patterns. In these situations,
superposition amalgamates state belonging to unrelated avail-
ability behavior, reducing prediction accuracy.

3.4 Linear Predictor
Linear prediction [15] is a common technique from digital
signal processing and statistical time series analysis. It uses a
linear combination of the last k signal points to predict future
points. The k coefficients are chosen to reduce the magnitude
of an error signal, which is assumed to be uncorrelated with
the underlying “pure” signal. To make availability predic-
tions for t time steps into the future, we iteratively evaluate
the linear combination using the k most recent availability
samples, shifting out the oldest data point and shifting in the
predicted data point. Linear prediction produces good esti-
mates for signals that are stable in the short term but oscilla-
tory in the medium to long term [27]. We would expect this
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This figure depicts the tournament counters and update queue
of a Hybrid predictor. The five bits in each queue entry rep-
resent the previous predictions of the five sub-predictors.

Figure 2: Hybrid predictor example

technique to work well with nodes having diurnal uptimes,
e.g., machines that are online during the work day and offline
otherwise.

3.5 Hybrid Predictor
A machine can transition between multiple availability pat-
terns during its lifetime. Furthermore, some availability pat-
terns are best modeled using different predictors for differ-
ent lookahead periods. To dynamically select the best pre-
dictor for a given uptime pattern and lookahead interval, we
employ a Hybrid predictor. Our approach is similar in spirit
to the “mixture of experts” strategy of the Network Weather
Service [35], but closer in design to hybrid branch predic-
tors [22]. For each lookahead period of interest, the Hybrid
predictor maintains tournament counters. These saturating
counters determine the best predictor to use for that looka-
head period. For example, Figure 2 depicts a three-level tour-
nament. Negative counter values select the left input, whereas
positive values select the right. In this example, the SatCount
predictor is currently more accurate than the RightNow pre-
dictor. Similarly, the History strategy is outperforming the
TwiddledHistory strategy. The best history-based approach
is beating the best “simple” approach, and the Linear predic-
tor performs worse than the best of the other four predictors.
Thus, the final output of the Hybrid predictor is the History
prediction.

Consider a Hybrid predictor making forecasts for an n-
sample lookahead period. At the beginning of each time unit,
the Hybrid predictor samples the current uptime state of its
node. Its five sub-predictors are updated with this state, and
each sub-predictor makes a prediction for n time units into
the future. The final output of the Hybrid predictor is se-
lected via tournaments as shown in Figure 2, and the individ-
ual sub-predictions are placed in a queue and timestamped

with curr time + n. If the head of the queue contains an
entry whose timestamp matches the current time, the entry
is dequeued and the tournament counters are updated using
the dequeued predictions. A tournament counter remains un-
changed if both of the relevant dequeued predictions match
the current uptime state or both do not match. Otherwise, one
prediction was right and the other was wrong, and the tour-
nament counter is incremented or decremented appropriately.
In the last stage of the update, the curr time value is in-
cremented.

A Hybrid predictor responsible for multiple lookahead pe-
riods keeps a separate update queue and tournament counter
set for each period. Each queue and counter set is maintained
using the algorithm described above.

4 Predicting Individual Node Availability
We first evaluate our predictors using the PlanetLab and Mi-
crosoft availability traces. Extending a Fourier transform
technique [8], we create a taxonomy of uptime classes and
explain the different availability behaviors of the two traces
by examining their constituent uptime classes. We then test
our predictors against the Overnet availability trace and show
that our models do not fare as well. We provide evidence
to suggest that this is not an artifact of our predictors, but in-
stead the result of a fundamental unpredictability in the nodes
themselves.

4.1 PlanetLab and Microsoft Nodes
To determine the real-world applicability of our predictors,
we tested them on two empirically gathered availability
traces. The first trace followed 51,662 PCs in the Microsoft
corporate network [6], and the second captured the behavior
of 321 nodes in the PlanetLab distributed testbed [1]. Each
machine in the Microsoft trace was pinged hourly. In the
PlanetLab traces [33], machines were pinged every 15 min-
utes, but we sampled every fourth measurement to provide
a fair comparison with the Microsoft data. The lifetimes of
PlanetLab nodes were long enough that such sampling did
not distort the underlying availability patterns. Our Planet-
Lab data spanned the five week period from July 1 to August
4, 2004. The Microsoft data spanned the five week period
from July 6 to August 9, 1999.

For each availability trace, we associated a unique Hybrid
predictor with each node. We used the first two weeks of
a node’s uptime data to train its predictor. Two weeks was
a reasonable training length because it gave a predictor two
chances to observe uptime patterns with a periodicity of a full
week. After training the predictors, we evaluated their accu-
racy by comparing their predictions to the remaining three
weeks of availability data. During each hour in the evaluation
period, the predictors made forecasts for multiple lookahead
intervals and were updated with uptime samples from that
hour. We say that a node is p-predictable for a certain looka-

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association76



www.manaraa.com

Microsoft Predictability
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(a) A stable core of Microsoft nodes remains highly predictable
across all lookahead periods.

PlanetLab Predictability
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(b) PlanetLab nodes start out highly predictable, but their pre-
dictability quickly degrades. Overall, these nodes are less pre-
dictable than the Microsoft set.

Figure 3: Microsoft and PlanetLab predictability

head period if we predicted its uptime behavior with at least
accuracy p.

All Hybrid predictors used 3-bit saturating tournament
counters. The organization of the tournaments resembled the
structure shown in Figure 2. However, instead of a single
Linear predictor, two Linear predictors competed with each
other—one tracked 168 bits of state and the other tracked 336
bits. Also, the History and TwiddledHistory predictors were
replaced with two two-level tournaments, allowing the same
predictor type with different k values to compete. The single
History predictor was replaced with a two-level tournament
comparing k values of 6, 24, 48, and 56; the same k values
competed in the TwiddledHistory multi-level tournament. In
all experiments, the SatCount predictors used 2 bits of uptime
state, and the TwiddledHistory predictors used a d of 1.

Figure 3 bins the predictability of individual Microsoft and
PlanetLab nodes for several lookahead intervals. For a 1-
hour lookahead period, 95.6% of PlanetLab nodes can be pre-
dicted with greater than 95% accuracy, as compared to only
87.0% of Microsoft nodes. However, as the lookahead period
increases, the percentage of PlanetLab nodes that are 95%-
predictable quickly drops below 20%. In contrast, slightly
over half of the Microsoft nodes are 95%-predictable across
all lookahead intervals.

Node Type Microsoft PlanetLab
Always On 60.66% 15.58%
Always Off 1.22% 5.60%

WW Periodic 9.79% 0.00%
Long Stretch 20.48% 67.60%

Unstable 70-90 2.05% 1.25%
Unstable 50-70 1.67% 1.56%
Unstable 10-50 4.12% 8.41%

Figure 4: Uptime Class Categorization

As the lookahead period increases, the predictability de-
cay of the Microsoft nodes is more graceful than that of the
PlanetLab nodes. For example, with a 144 hour lookahead
period, 72.5% of the PlanetLab nodes have worse than 70%
predictability; in the Microsoft data set, only 22.6% of nodes
are this bad. In fact, for all of the studied lookahead periods,
no more than a fourth of the Microsoft nodes are ever worse
than 70%-predictable.

Why do the two data sets have different predictabilities?
To answer this question, we must determine the distinct up-
time classes contained in each set. We extract these classes
by extending a technique proposed by Douceur [8]. Douceur
wanted to identify nodes with diurnal uptime patterns, e.g.,
machines that were online from 9 AM to 5 PM during the
work week. Douceur treated each node’s uptime trace as a
digital signal where bit n was a 1 if the node was online dur-
ing hour n. He then applied a Fourier decomposition [15]
to each signal, determining the set of sine waves whose sum
equaled the original signal. Nodes with diurnal uptime pat-
terns had spikes in the daily and weekly frequency spectra.

We can generalize this technique to detect multiple types of
uptime regimes. To classify a node’s availability behavior, we
convert its uptime string into a digital signal and apply several
tests to it. Once an uptime signal passes a test, we consider it
categorized and we do not apply the remaining tests.

First, we classify a node as always on or always off if it’s
availability signal contains 90% ones or zeros, respectively.
Second, nodes are subjected to Douceur’s technique to detect
diurnal periodicity. Nodes that pass this test are work-week
periodic. Third, if the Fourier decomposition resembles the
curve 1/f , the node’s uptime pattern is the summation of low
frequency sine waves. This means that the node’s online and
offline stretches are long running, and we label these long
stretch nodes. While it is possible that unstable nodes have
spikes in frequency domains other than those explored, we
have not found such spikes in our traces. Therefore, a node
failing all of these tests is labeled unstable. We further bin
unstable nodes according to the percentage of time that they
are online. This creates the uptime classes unstable70to90,
unstable50to70, and unstable10to50.

Figure 4 describes the constituent uptime classes in the
PlanetLab and Microsoft traces. We see that PlanetLab is
dominated by long stretch nodes. Long stretch nodes are
highly predictable in the short term—given the current uptime
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state of a long stretch node, we can confidently predict that it
will remain in that state for the next few hours. However, long
stretch nodes are increasingly unpredictable for larger looka-
head intervals because their uptime regimes lack periodicity.
Once such a node changes uptime state, it will keep that state
for many hours, but the arrival of these changes are random.
Thus, the predictability of the PlanetLab system as a whole
degrades for long lookahead periods.

In the Microsoft data set, 61% of the machines are always
on. These nodes represent the stable core which is 95%-
predictable across all lookahead intervals. Whereas the Plan-
etLab system has no work-week periodic nodes, 9.79% of
the Microsoft machines have these diurnal uptime patterns 1.
These machines are often highly predictable, although this is
not always the case. For example, some machines are work-
week periodic only to the extent that they are always offline
during non-work day hours; during the actual work day, these
machines have highly variable availability and thus are diffi-
cult to predict during these times. As another example, some
work-week periodic machines are occasionally left online for
multiple work days or left online during the weekend. Such
aperiodic behavior is also difficult to forecast.

4.2 Predictability of Overnet Nodes
Microsoft and PlanetLab machines have fairly long session
times; a node that has just come online will likely stay online
for multiple consecutive hours. Nodes in other peer-to-peer
networks like Gnutella or Napster have much higher churn
rates [3, 29], typically on the order of tens of minutes. A nat-
ural question is whether these uptime patterns can be modeled
using our prediction techniques.

To answer this question, we fed our predictors an availabil-
ity trace of the Overnet DHT [3]. The trace covered 7 days
with a sampling period of 20 minutes, providing 504 sample
points. The trace contained 1,468 nodes that responded to at
least one probe from January 15 to January 21, 2003. To eval-
uate the predictors on the Microsoft and PlanetLab data, we
trained them for 2 weeks, which at a sample rate of once an
hour resulted in 336 training samples and 504 evaluation sam-
ples. For a fair comparison, we also trained our Overnet pre-
dictors for 336 samples, leaving only 168 samples for eval-
uation purposes. We did not selectively pick hourly samples
as we did for the PlanetLab traces because a probing gran-
ularity of 20 minutes is appropriate for a network with high
churn rates. However, we did filter out nodes that were not
online at least once in the first 100 samples and the last 100
sampling periods. This created a more challenging prediction

1Note that Douceur reported that 14% of Microsoft nodes have cyclical
availability patterns [8], whereas we say that only 9.79% of them are work-
week periodic. We report a lower percentage because we use a higher energy
cutoff in the daily and weekly spectra for a node to classify as work-week
periodic. From the perspective of evaluating our predictors, this more strin-
gent cutoff is reasonable. For example, a node which is always offline except
from noon to 2 PM during the work-week looks more like an always off node
to our predictors. Thus, we categorize it as such.

Overnet Predictability, Restricted Trace
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Our availability predictions are less accurate for the Overnet
trace than for the Microsoft and PlanetLab data sets.

Figure 5: Overnet predictability

environment, since many Overnet nodes were almost always
offline and thus easy to predict. Bhagwan also estimated a
non-trivial attrition rate of 32 hosts per day in the full node
set [3]. Our paper is not concerned with long-term attrition
effects, so the smaller trace set (haphazardly) filters out some
of these “permanently” lost nodes.

In the full Overnet trace, about a third of all nodes are 95%
predictable for an arbitrary lookahead period; these are pri-
marily nodes which are almost always off. As depicted in
Figure 5, less than a tenth of the nodes in the restricted trace
are 95%-predictable for an arbitrary lookahead period. In
fact, the overall predictability of the restricted Overnet trace
is much worse than that of the Microsoft or PlanetLab system.
A natural question arises: what properties of the Overnet data
set make it less predictable?

4.3 Entropy and Predictability
We must interpret the Overnet results from Section 4.2 with
caution, since we have fewer evaluation samples than in the
PlanetLab/Microsoft experiments and we cannot fully control
for long term node attrition. We also do not have enough sam-
ples to confidently categorize nodes as work-week periodic,
unstable, etc. However, manual inspection of the three uptime
traces reveals qualitative differences in availability patterns.
Overnet nodes appear to have more long stretch downtime
than Microsoft or PlanetLab nodes, but the online stretches of
Overnet nodes seem more randomly punctuated by bursts of
downtime. This implies that Overnet nodes with non-trivial
amounts of uptime should be more difficult to predict than
Microsoft or PlanetLab nodes with similar uptime percent-
ages.

To quantify this intuition, we use the information theoretic
concept of approximate entropy [26], denoted ApEn(x).
Given an arbitrary length input string and an integer m,
ApEn(m) represents the additional information provided by
the last symbol of an m-character substring, given that we al-
ready know the first m-1 characters. Approximate entropy is

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association78



www.manaraa.com

Approximate Entropy of
Availability Traces

0%
10%
20%
30%
40%
50%
60%
70%
80%

< 0.1 0.1 to
0.2

0.2 to
0.3

0.3 to
0.4

0.4 to
0.5

0.5 to
0.6

> 0.6

ApEn(8) Ranges

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
N

o
d

es
Microsoft
Restricted Overnet
PlanetLab

(a) This chart categorizes the approximate entropies of the
availability strings in each trace set.

Approximate Entropy vs. Predictability
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Figure 6: Approximate Entropy Results

highest when all m-character substrings have equal frequen-
cies. When ApEn(m) is low, we conclude that the string has
repeated patterns and is non-random. As a simple example,
consider the string {10}∗. Knowing the first bit of a two bit
substring allows perfect prediction of the following bit. Thus,
ApEn(2) is close to 0.

Figure 6(a) bins the approximate entropies of the uptime
strings in the Microsoft, PlanetLab, and restricted Overnet
traces. This figure validates our intuition that Overnet hosts
have less regular availability patterns. The ApEn(8) values
of the Microsoft and PlanetLab nodes are primarily smaller
than 0.3, but 42% of Overnet nodes have an ApEn(8) greater
than 0.3. Figure 6(b) plots ApEn(8) versus predictability for
the Microsoft data set, confirming that higher entropy values
are indeed correlated with lower predictability.

Note that the PlanetLab trace has higher entropy than the
Microsoft trace. Referring to Figure 4, we see that the Planet-
Lab system has twice as many unstable10to50 nodes, which
we would expect to be quite random. More importantly, Plan-
etLab is dominated by long stretch nodes instead of always on
nodes. This should also increase system entropy, since long
stretch nodes have less regularity than always on machines.

Machines with high uptime entropy may be difficult to pre-
dict individually, but a possible salvation may lie in the ability
to identify nodes with correlated uptimes. Nodes displaying

erratic behavior when considered singly may show emergent
periodic behavior when considered in aggregate. This notion
is supported by the Overnet trace, which shows diurnal peri-
odicity at the global scale. By expanding the notion of super-
position to include clusters of machines, we may be able to
diminish the impact of entropy upon prediction accuracy for
single nodes. We are currently investigating such methods.

4.4 Discussion
The Microsoft, PlanetLab, and Overnet traces were collected
using a centralized probing infrastructure. For reasons of
scalability or trust, such an architecture may be undesir-
able in some deployment scenarios. When we discuss our
availability-aware applications in Section 5, we describe sev-
eral mechanisms for decentralized dissemination of availabil-
ity data. Dealing with malicious hosts seems to be a more
difficult problem. It is not immediately obvious how a host
can prove that its actual uptime history is equivalent to one
gathered through centralized pinging or self-reporting. De-
veloping threat models for availability-aware systems is an
important area of future research.

Network partitions or outages may cause gaps in avail-
ability histories. For example, if histories are compiled via
centralized probing, then probes may be dropped in a cor-
related, system-wide manner. Alternatively, if histories are
self-maintained, network outages will hamper attempts to dis-
seminate these records to peers. We are currently developing
middleware to collect and distribute availability data in the
face of such events.

The Microsoft and PlanetLab traces used pings to deter-
mine availability. If machines receive IP addresses in a non-
static way, e.g. from DHCP or NAT, and the probing infras-
tructure is unaware of such dynamic assignments, then ping-
based probing can lead to an overestimation of the number of
hosts and an underestimation of host availability [3]. Fortu-
nately, IP aliasing should be rare in both of these traces. The
Microsoft study performed name lookups before each round
of pinging so that availability strings could be assigned to spe-
cific machines instead of specific IP addresses. Furthermore,
as stated in the instruction manual for PlanetLab administra-
tors, the primary IP address for each PlanetLab node should
be a static one.

Aliasing is not a problem if per-host operating system logs
are used to infer availability [31]. Such an approach also al-
lows one to measure availability exactly, as opposed to es-
timating it via sampling. However, this extra knowledge is
not necessarily useful for availability prediction, since very
brief downtime is generally “noise” and should be ignored.
For example, most downtime due to software upgrades or re-
juvenation rebooting should be aperiodic (making it difficult
to predict) and fairly brief (so that it has little impact on a
host’s overall availability profile). Thus, such events should
be omitted from the history that is used to make predictions,
since they will only obscure essential availability trends. If
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such events are substantial contributors to system downtime,
then the sampling interval can be decreased. The sampling in-
terval should also be selected with an eye towards typical ses-
sion times. For example, session times are shorter in Overnet
than in PlanetLab, so Overnet nodes should be sampled more
than PlanetLab ones.

5 Applications of Availability Prediction
For our first application of availability prediction, we describe
a distributed hash table which preferentially stores objects on
highly available nodes; the modified DHT transmits fewer ob-
jects for regeneration and has greater data availability. We
then show how availability predictors can improve routing
performance in delay-tolerant networks. Finally, we integrate
availability prediction with models of computer virus propa-
gation and show how we can capture diurnal fluctuations in
infection intensity. For each application, we use Hybrid pre-
dictors having the parameterizations and training times de-
scribed in Section 4.1.

5.1 Availability-aware Replica Placement
In a distributed data store, objects are replicated for reliability
and availability. When a replica site goes offline, its objects
typically must be copied from another machine and regener-
ated at a new site. By biasing data placement towards highly
available nodes, we reduce the number of objects that must
be shipped for regeneration. The bandwidth savings will be
substantial if objects are large or there are many objects.

We frame our investigation of replication strategies within
the context of the Chord routing infrastructure [32]. Each
Chord node has a 160-bit overlay identifier, typically the hash
of its IP address. The 2160 possible identifiers form a circular
address space; the successor of a node is the first online ma-
chine with a larger identifier mod 2160, and the predecessor
is defined similarly. Each node tracks s immediate succes-
sors as well as several routing table peers. Through clever
selection of routing table entries, nodes only need to main-
tain O(logN) entries to provide O(logN) route length.

In a Chord-based DHT, an object is stored on the first node
whose identifier is larger than the hash of the object. If repli-
cation is desired, the k replicas are stored on the first k nodes
with larger identifiers [32]. The node immediately preceding
the replica sites for an object is that object’s replica manager.
Queries for that object are routed to the replica manager, who
responds to the initiator with the IP addresses of the replica
sites.

We investigate five replication strategies. The first two
do not use availability prediction. In the regular replication
method described above, objects must be regenerated when-
ever a replica site leaves or a node join causes the first k suc-
cessors of an object id to change. In the sticky replica strat-
egy, a newly entering node N places replicas on its first k
join-time successors. N continues to use a replica site until
that site leaves the overlay, at which point it is replaced with
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Figure 7: DHT simulation results
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the first successor of N that is not already a replica site for N.
The sticky replica strategy requires fewer object copies than
the standard scheme since only node leaves cause replicas to
be transferred. Unfortunately, the overlay identifiers for an
object’s replica sites are no longer a simple function of that
object’s id. If a replica manager goes down unexpectedly,
the pointers to its replica nodes are lost, and the associated
data cannot be rediscovered in an efficient way [7]. To guard
against this, each node backs up its replica site pointers on its
first k successors. When a node leaves the overlay, its prede-
cessor can find the replica sites for the new objects it manages
and copy the necessary data to its replica sites.

The next two replication strategies use availability predic-
tion to guide replica placement. Each node has a Hybrid
predictor that it updates every hour. After each update, the
node estimates the remaining number of hours that it will
remain online, making iterative availability predictions for
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1 hour into the future up to some maximum lookahead pe-
riod. During each iteration, the estimate is incremented by
1 if the Hybrid predictor outputs “online” and the observed
accuracy of predictions for that lookahead period surpasses a
minimum threshold; if either condition is false, iteration ter-
minates. Nodes periodically exchange their estimated avail-
abilities with the other peers in their routing tables. These val-
ues are piggybacked atop standard routing stabilization mes-
sages [32]. In the simulation results given later, the maximum
lookahead period was 15 hours and the minimum confidence
level was 90%.

In the most-available successors replication strategy, ab-
breviated MAS-j, a replica manager places objects on the k
most available of its first j successors, where k ≤ j ≤ s. A
node’s replica site is sticky as long as it remains one of the
first j successors. The sticky replicas with availability pre-
diction scheme, abbreviated sticky-ap, features unconstrained
attachment to replica sites as in the regular sticky strategy.
Additionally, when a node picks a new replica site, it picks
the most available of its immediate s successors that is not
already a replica site.

For comparison purposes, we also study the optimal place-
ment strategy. This strategy is like sticky-ap, but the avail-
ability predictor is an oracle. When a new replica site must
be picked, the optimal scheme selects the node in the first s
successors that will definitely be online for the longest con-
secutive period.

Figure 7 shows DHT performance when availability is
driven by the Microsoft or the PlanetLab trace. The results
were produced using a derivative of the well-known Chord
simulator [32]. Leaves and joins that happened in the same
hour in an availability trace were uniformly and randomly
distributed across the corresponding hour in the simulation.
All simulations ran for 504 virtual hours. The simulated Mi-
crosoft DHT contained 1000 nodes and the simulated Planet-
Lab one contained 321 nodes. 2% of DHT operations were
writes and 98% were reads. In aggregate, the Microsoft DHT
issued about 660 requests each minute according to a Pois-
son distribution. The PlanetLab DHT used the same per-node
request rate, but due to its smaller size, it only issued about
210 aggregate requests per minute. The replication factor was
4 in both DHTs, and each node’s routing cache tracked 20
immediate successors. Each replication strategy was tested
five times. The ith run for each strategy used the same set of
nodes, but this set was changed for each value of i. Standard
deviations were less than 3% amongst the trials for a particu-
lar replication strategy.

Figure 7(a) shows that availability-guided replication
strategies result in many fewer copies due to replica regener-
ation. The savings are largest in the Microsoft DHT, with the
regular replication strategy requiring 215% more copies than
optimal and the sticky-ap strategy requiring only 11% more
copies than optimal. The gains are smaller in the PlanetLab
system, with the regular replication strategy requiring 65%

more copies than optimal and the sticky-ap strategy requiring
3.4% copies beyond optimal. The discrepancy in savings is
primarily explained by the fact that the Microsoft system had
more nodes that were always online. Biasing data storage
towards such nodes will lower overhead more than biasing
objects towards long stretch nodes that will be online for sev-
eral consecutive hours, but will still eventually go offline and
require object copying. The Microsoft DHT also had work-
week periodic nodes, unlike the PlanetLab one. Although
work-week periodic nodes may often be offline, we can still
take advantage of phase-shifted diurnal patterns to reduce ob-
ject copying (see the example in Section 2).

We should distinguish between the savings derived from
having sticky replica sites and the savings produced by clever
choice of these sites. For example, in the Microsoft DHT,
if we compare the sticky-rep strategy with sticky-ap, we see
that sticky-ap required roughly 7.3 million copies, whereas
the sticky replicas strategy required about 8.3 million copies.
This reduction of a million copies can be understood as the
savings from quickly identifying highly available nodes, as
opposed to hoping that your first k successors are highly
available and having to regenerate their replicas if you are
wrong.

Figure 7(b) describes the effective system availability
(ESA) of the two DHTs using various replication strategies.
ESA expresses global object availability in units of “nines.”
For example, if we expect an arbitrary object to be accessible
via some replica site 99% of the time, the system-wide object
availability is 0.99 or 2 nines of availability; more detailed
discussion of ESA is provided elsewhere [9]. As expected,
ESA goes up as the DHT has more freedom to bias object
storage towards highly available nodes, and the improvement
is greater in the Microsoft system. For example, in the Mi-
crosoft DHT, MAS-15 more than doubles the baseline ESA,
adding 2.17 nines. In the PlanetLab DHT, MAS-15 improves
ESA from 1.31 to 2.08.

If nodes use a replication strategy with unconstrained stick-
iness, a node may place objects on peers that “move beyond”
its first s successors. In these scenarios, nodes will have to de-
vote extra heartbeat messages to ensure that these replica sites
are online. If objects are relatively small, then the relative cost
of these heartbeat messages may justify the use of schemes
such as MAS-10 which place replicas on peers which would
already be pinged.

Also note that there is a tension between reducing object
copies and maintaining equitable storage burdens. This ten-
sion is depicted in Figure 8, which shows the cumulative dis-
tribution of object storage with respect to the number of nodes
in the Microsoft DHT. The line y = x represents a perfectly
equitable storage burden, i.e., X% of the total objects would
be stored on exactly X% of the nodes. The regular replica-
tion strategy was close to this line, although it was slightly
convex since real-life storage burdens will never be exactly
uniform. In the standard replication scheme, 1.4% of nodes
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stored less than 100 objects per online hour, and 59.7% of
nodes stored between 300 and 900 objects per online hour.
The distributions for the availability-guided replication strate-
gies were much less equitable. For example, with MAS-20,
57.0% of nodes stored less than 100 objects per online hour.
The storage skew was even more dramatic for the sticky-ap
scenario, where 10% of nodes stored 64% of the objects.

The system designer must balance competing requirements
for high ESA, low bandwidth usage, and equitable storage
burdens. The threat model must also be considered. If nodes
are untrusted, it is unwise to bias too many objects towards a
few nodes, since this multiplies an attacker’s ability to corrupt
the object store. Studying these trade-offs is an important area
for future work.

5.2 Delay-tolerant networks
In the traditional wired Internet, machines often have the lux-
ury of persistent, high quality connections to their peers. In
contrast, delay-tolerant networks (DTNs) [13] are composed
of heterogeneous devices with vastly differing networking
and storage capabilities. Delay-tolerant networks must de-
liver messages in spite of intermittent device connectivity and
differences in link bandwidth and latency that may span or-
ders of magnitude. We provide two examples of DTNs later
in this section.

The simplest DTN routing algorithm forwards each mes-
sage along the first available link providing forward progress.
Given the heterogeneous link qualities and intermittent con-
nectivities that characterize a DTN, we would expect such a
naive routing scheme to perform far worse than optimal. Jain
et al describe how to use resource oracles to decrease mes-
sage delivery times [16]. For example, they define a contact
oracle which has perfect knowledge of link characteristics.
Given two devices and an arbitrary point in the future, the
contact oracle can output whether a link will exist between
the two devices. Using our availability prediction techniques,
we can approximate such an oracle and plug it into the routing
algorithm described in [16].

We evaluate our contact oracle by simulating the behav-
ior of two DTNs. The first one is reminiscent of an example
provided by Jain et al. Imagine that a remote village with-
out wired Internet access wishes to fetch web pages. Further
suppose that the village is willing to tolerate asynchronous
delivery latencies on the order of a day; such latencies are
quite reasonable if the web pages are required to teach a class
whose syllabus is known in advance. The remote village has
a much larger sister city with a wired Internet connection,
but this city is several hours away by ground transportation.
Luckily, the buses that travel between the two cities can act
as data mules, with outbound vehicles from the village car-
rying web requests and inbound vehicles carrying web data
to be downloaded in the city. We assume that there are three
round trips between the village and the city each day. The
time required for each one way trip is chosen uniformly from

the range [100 minutes, 140 minutes]. The first bus leaves
the village at 8 AM, and the last bus is expected to return to
the village at 8 PM. Each bus has a data capacity of 128 MB
(equivalent to a small USB memory card), and each bus stays
in network contact at the village or the city for five minutes.
We assume that the bandwidth of the USB device is 1 Mbps.

The village has two additional means of communication.
First, the village and the city are periodically connected by a
satellite link. The satellite is close enough to both locations
to form a direct link every six hours, and the link persists for
ten minutes. The satellite bandwidth is 10 kilobits per second
and the latency is 3 seconds. Second, the village has access
to a slow dial-up modem which, for reasons of expense, is
only accessible from 11 PM to 6 AM. Due to an unreliable
telephone infrastructure, this link is offline for 10% of its os-
tensibly available period, with the unexpected disconnections
scattered uniformly between 11 PM and 6 AM.

Figure 9 shows simulation results for the DTN described
above. Web requests were 1KB on average and web re-
sponses were 10KB on average, as suggested by empirical
studies of web traffic [28]. Predictors were trained on two
weeks of synthetic availability data with a sampling granular-
ity of 20 minutes. Messages were then generated at randomly
chosen times for 5 simulated days; simulation termination oc-
curred once all messages had been delivered. Routing was re-
active, i.e., when a message arrived at a node to be forwarded,
the node used the most recently observed availability data to
calculate the route for that message.

In the low load scenario of Figure 9, the village and the city
exchanged 200 messages a day (i.e., 200 web requests were
sent to the city and 200 web fetches were sent to the village).
Using our availability predictors led to average message la-
tencies that were only 6.7% worse than those incurred by op-
timal oracles. The worse-case delay was only 7.5% worse.
In the high load scenario, the village and the city exchanged
1000 messages a day. Uptime mispredictions resulted in
greater penalties in this scenario, since a single poor predic-
tion could result in many messages being routed through an
erratically online node. However, average message delays in
our predictor system were still within 16% of those in a sys-
tem with infallible contact oracles. Worse case delays were
within 9.6% of optimal.

Our second evaluation DTN represents a collaborative sen-
sor node system. We suppose that each user in the system
possesses a laptop, a desktop PC, and a set of trusted laptops
and desktops belonging to friends. When a user moves to a
new location and begins to work on her laptop, the laptop may
“notice” something interesting about the surrounding envi-
ronment, e.g., the availability of a new wireless access point.
The user wants to share this information in an effort-free (and
secure) method with her friends. Thus, her laptop acts as a
store-and-forward node for the interesting piece of informa-
tion. If the laptop is online when a friend’s device is online,
the laptop can directly transmit the information to the friendly
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results in message delays that are close to those generated
by an infallible contact oracle. These results represent the
outcomes of twenty simulation runs.

Figure 9: Message delays in the village DTN.

device. Otherwise, the laptop tries to forward the data across
a path of trusted machines.

In our simulation of this DTN, each PC’s uptime was
driven by a trace from the Microsoft corporate network. Each
laptop’s availability was driven by a trace from Kim et al’s
wireless availability study [18]. We filtered out laptops and
PCs which were not online at least once during the first 20%
and the last 20% of their respective trace period. Laptop avail-
ability was sampled every 30 minutes and PC availability was
sampled every hour. Each user sent messages to a trusted
collection of ten laptops and ten PCs. Message sizes varied
uniformly between 1KB and 20KB, and messages were ran-
domly generated by each laptop using a Poisson distribution
with a λ of 0.5 messages per online hour. When a laptop
generated a message, it first delivered it to all trusted nodes
which were also online. If the laptop predicted that an offline
friend would come online before it left the network, it would
wait to deliver the data directly. Otherwise, it would instruct
one or more of its online buddies to forward the data to the
remaining friendly devices. If, for a particular message, sev-
eral destination devices shared a common next hop from the
current machine, only one copy of the data was forwarded to
the next hop. Laptops communicated with desktops using 11
Mbps wireless links, and desktops communicated with each
other using 100 Mbps Ethernet connections. We assumed that
a path (i.e., link) existed between two machines if they were
online at the same time, and all routing was reactive.

Figure 10 shows simulation results for the collaborative
sensor DTN. Each data point represents the average of 20 tri-
als, and during each trial, the DTN was comprised of a ran-
dom subset of 300 laptops and 300 PCs from the respective
availability traces. Each trial ran for 504 simulated hours, and
predictors were pre-trained on 336 hours of data. We used
Jain et al’s definition of load [16], such that the load over the
duration of a simulation was the sum of the traffic demand
divided by the sum of the available transmission bandwidth
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In low to medium load situations, our availability predic-
tion scheme is within 15% of optimal. The performance gap
widens for loads greater than 0.6, with our scheme 40% worse
than optimal under a load of 1.5. However, we still perform
much better than a naive routing scheme which simply waits
for the sender and the receiver to come online at the same
time.

Figure 10: Message delays in a collaborative sensor DTN.

during this time. Note that some of this bandwidth would lie
idle if a node had nothing to transmit at a particular moment.

As in the village DTN, when loads became high, the delay
differences between the availability prediction system and the
infallible oracle system grew. This difference was at worst
40% for a load of 1.5, but was closer to 10-15% for more rea-
sonable loads. Additionally, our availability prediction sys-
tem always had better performance than a naive scheme in
which nodes never forwarded data using intermediate nodes
and always waited for the destination machine to come on-
line. Thus, we believe that our availability predictors can
provide a meaningful improvement in DTN performance.

DTNs are a fairly new idea, so there is no consensus on
the best way to maintain distributed DTN routing state. One
could imagine that hosts with the necessary computational
resources engage in a BGP-like protocol [12] to exchange
link state. Each routing table entry would contain the next
hop to a particular destination and the predicted availability
profiles of nodes along the route. Each device would track
its own availability history, but computationally weak nodes
would push the tasks of uptime prediction and route selection
to more powerful ones.

5.3 Virus Modeling
Traditional analytic models of computer virus propaga-
tion [17, 25, 34] assume that machines are always online.
This assumption is often incorrect—the non-trivial churn
rates found in real distributed systems result in network
topologies with rich time-sensitive dynamics. At any given
moment, some infected machines are offline (and thus effec-
tively non-contagious), and some susceptible machines are
offline (and therefore temporarily protected from infection).
In such a fluid topology, the infection rate is no longer a

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 83



www.manaraa.com

simple function of the virulence of the malicious code and
the time it takes to discover an infected node and install the
relevant software patch. Now, we must incorporate a time-
varying availability function which describes node churn.
Such time-dependent availability diminishes the aggressive-
ness of viral propagation, since infected hosts will be unable
to spread the virus when they are offline. However, we cannot
determine that a diseased node is sick until it comes online.
Thus, the availability dynamic also impedes the discovery of
infected hosts and subsequent application of the “cure.” The
net result is a quantitative and qualitative impact on the in-
fection dynamic, an impact which has been observed in the
real world. For example, an empirical study of the Code-Red
worm discovered strong diurnal patterns in viral behavior,
with the number of active diseased hosts spiking at the start
of the workday and ebbing as some people applied patches
and many people turned off their workplace computers and
left for their homes [23].

As a first step towards more expressive viral models, we
have derived an availability-aware version of the Kephart-
White framework [17]. The classic Kephart-White model
uses a differential equation to describe computer virus prop-
agation. It assumes a susceptible-infected-susceptible (SIS)
environment—a machine enters the system in a healthy state,
and it can catch and subsequently be cured of the infection
an infinite number of times 2. The Kephart-White model as-
sumes a homogeneous network topology in which all nodes
have similar levels of connectivity or “out-degree.” In such a
network, the fraction f of infected nodes is given by:

df

dt
= β〈k〉f(1 − f) − δf (1)

where t is time, β is the viral birth rate along every edge from
an infected node, δ is the cure rate at each infected node, and
〈k〉 is the average connectivity of a node. β, δ, and 〈k〉 are
assumed to be constant.

To represent the notion of machine availability, we define
a time-varying activity percentage, denoted a. Just like f , a
assumes values in the range [0.0, 1.0]. At time t, we let a(t)
represent the fraction of all machines in the distributed sys-
tem which are currently online. This results in the following
differential equation:

df

dt
= β〈k〉(fa)[(1 − f)a] − δfa. (2)

With respect to the standard Kephart-White equation, we re-
placed the infected fraction f with fa and the susceptible
fraction (1 − f) with (1 − f)a. These new quantities rep-
resent the fact that nodes must be active to transmit or receive
the virus.

2The simple SIS model has no conception of permanent immunity, so
it only crudely models the deployment of remedies like software patches.
We use the SIS model here for pedagogical clarity, but it is straightfor-
ward to incorporate availability-awareness into more realistic models such
as susceptible-infected-removed.
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work (β=0.008, δ=0.07,〈k〉=30). The forecasts of our new
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tion driven by real availability data. For the availability-aware
results, the two humps after hour 144 represent peaks in in-
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Figure 11: Epidemics in homogeneous topologies

Figure 11 shows that fluctuating node availabilities have
a marked impact upon infection dynamics. Given β=0.008,
δ=0.07, and 〈k〉=30, the standard Kephart-White model pre-
dicts a steady state infection fraction of 70%. However, if we
remove the erroneous assumption of constant network con-
nectivity and use real machine availabilities, viral propaga-
tion changes in two ways. First, there are cyclical fluctuations
in the number of infected nodes corresponding to the diurnal
work-week patterns in the underlying availability trace. Sec-
ond, the average steady state infected percentage is depressed,
relative to an environment in which nodes are always on.

What explains these new phenomena? Remember that a
node can be cured or infected only if it is online. Given that a
node is online, the probability of being cured is proportional
to the constant δ, whereas the probability of being infected
is proportional to the constant β and 〈k〉fa, the number of
infected neighbors that are currently online. The likelihood
of being cured is unrelated to the availability of its neigh-
bors. However, its chances of being infected will diminish if
its neighbors ever go offline. Thus, the unavailability of ma-
chines effectively strengthens the cure “force.” This strength-
ening is dependent on the rate at which machines enter and
leave the network. Since this rate has diurnal fluctuations, a
diurnal infection dynamic emerges.

The Kephart-White model assumes that each node has the
same number of neighbors. Such assumptions of connec-
tivity homogeneity are reasonable when analyzing malicious
code that spreads indiscriminately, e.g., via random IP scan-
ning. The homogeneity assumption may be unwarranted for
viruses which spread via application-level vectors that are
governed by social relationships. For example, email contact
graphs have a power-law connectivity distribution, meaning
that most people have few contacts and a small number of
people have many contacts [11]. In these situations, epidemi-
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Figure 12: Epidemics in power-law topologies

ological models which assume contact homogeneity will have
poor predictive power.

Adding availability prediction to an analytic model for
power-law epidemics is an important area of unfinished work.
However, we can already use simulation-based approaches to
discern the impact of fluctuating uptimes upon the viral dy-
namic. Figure 12 shows simulation results for a 321 node
power-law network with uptimes driven by the PlanetLab
trace. Although global availability in the PlanetLab system
showed no diurnal periodicity, more than 40% of all nodes
were offline at any given moment. This should lead to a large
depression in the infection level that would have resulted if
machines were always online. Simulations using predicted
availability captured this phenomenon well and were quanti-
tatively similar to simulations that used actual (oracle) avail-
ability. This accuracy was achieved despite the fact that, as
Figure 3(b) shows, only 17% of PlanetLab nodes are 95%-
predictable for a 24 hour lookahead. These results imply that
availability prediction can still provide useful benefits in en-
vironments that are relatively unpredictable in the medium-
to-long term.

When availability data is used to assist antiviral efforts,
the dissemination mechanism for this data will depend on
the configuration of the antivirus system. For example,
enterprise-level antiviral systems often use a small number
of servers to receive new virus definitions. These centralized
servers push new definitions to clients whenever they please,
and they can force clients to scan for malware. Since end-
users cannot stop these forced scans, the centralized servers
have complete control over enterprise-wide antiviral policy.
In such a scenario, the servers can also act as the global repos-
itory for availability data. They may ping clients directly,
aggregate client-reported availability data, and/or infer avail-
ability through inspection of DHCP requests, ARP traffic,
etc. Using this data to predict future availability, the servers

can then prioritize patch distribution. For example, patches
should preferentially be pushed to clients which are always
on, since these are the machines which, if infected, will have
the most opportunities to infect other hosts. If the system
spans time zones, then one might want to create a “time zone
firewall” by preferentially patching work-week periodic hosts
in time zones where the work day is about to begin.

6 Conclusion
Loosely-coupled distributed systems are comprised of nodes
that can join and leave the collective at any time. Previous
models of peer-to-peer availability [2, 5, 10] provide conser-
vative estimates of uptime, but these models cannot predict
changes in availability over time. To achieve true insights
into the behavior of peer-to-peer systems, availability must
be a first class concern.

In this paper, we introduce new techniques for availability
prediction. Our predictors track fine-grained, per-node up-
time state to estimate future availability, leveraging the most
accurate estimation mechanism for each situation. To quanti-
tatively characterize differences in availability between mul-
tiple distributed systems, we use techniques from signal anal-
ysis and information theory to create uptime taxonomies.

We describe three useful applications of availability pre-
diction. By biasing replica storage towards highly available
nodes, we can reduce network bandwidth consumption and
increase data availability. Using our uptime predictors as
contact oracles, we can reduce message latencies in delay-
tolerant networks. Finally, by incorporating availability into
epidemiological models, we can capture empirically observed
infection dynamics.
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